In 1997, Morel, Magnin, and Jeanmonod presented a microscopic stereotactic atlas of the human thalamus. Parcellations of thalamic nuclei did not only use cyto- and myeloarchitectonic criteria, but were additionally corroborated by staining for calcium-binding proteins, which bears functional significance. The atlas complies with the Anglosaxon nomenclature elaborated by Jones and the data were sampled in three orthogonal planes in the AC-PC reference space. We report on the generation of three-dimensional digital models of the thalamus based on the three sets of sections (sagittal, horizontal, and frontal). Spatial differences between the three anatomical specimens were evaluated using the centers of gravity of 13 selected nuclei as landmarks. Subsequent linear regression analysis yielded equations, which were used to normalize the frontal and horizontal digital models to the sagittal one. The outcome is an internally consistent Canonical Model of Morel’s atlas, which minimizes the linear component of the variability between the three sectioned anatomical specimens. In addition, we demonstrate the feasibility of the atlas-to-MRI registration in conjunction with on-line visualization of the trajectory in the digital models.

Neuroimage. 2000 Dec;12(6):601-16.

PMID: 11112393